首页> 外文OA文献 >On the design of discontinuous Galerkin methods for elliptic problems based on hybrid formulations
【2h】

On the design of discontinuous Galerkin methods for elliptic problems based on hybrid formulations

机译:基于混合配方的椭圆问题不连续Galerkin方法的设计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The objective of this paper is to present a framework for the design of discontinuous Galerkin (dG) methods for elliptic problems. The idea is to start from a hybrid formulation of the problem involving as unknowns the main field in the interior of the element domains and its fluxes and\udtraces on the element boundaries. Rather than working with this three-field formulation, fluxes are modeled using finite difference expressions and then the traces are determined by imposing continuity of fluxes, although other strategies could be devised. This procedure is applied to four\udelliptic problems, namely, the convection-diffusion equation (in the diffusion dominated regime), the Stokes problem, the Darcy problem and the Maxwell problem. We justify some well known dG methods with some modifications that in fact allow to improve the performance of the original methods, particularly when the physical properties are discontinuous.
机译:本文的目的是为椭圆问题的不连续Galerkin(dG)方法设计提供一个框架。这个想法是从问题的一种混合表述开始的,该问题涉及未知的元素域内部的主场及其元素边界上的通量和\ udtrace。尽管可以设计其他策略,但使用有限差分表达式对通量建模,然后通过施加通量的连续性来确定迹线,而不是使用此三场公式。该程序适用于四个\椭圆的问题,即对流扩散方程(在扩散控制下),斯托克斯问题,达西问题和麦克斯韦问题。我们通过一些修改来证明某些众所周知的dG方法是正确的,实际上,这些修改可以提高原始方法的性能,尤其是在物理特性不连续的情况下。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号